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ABSTRACT
We outline à la carte, an approach for simulating com-

puting architectures applicable to extreme-scale systems
(thousands of processors) and to advanced, novel archi-
tectural configurations, and describe in detail our simula-
tion model of the Quadrics interconnection network. Our
component-based design allows for the seamless assembly
of architectures from representations of workload, pro-
cessor, network interface, switches, etc., with disparate
resolutions and fidelities, into an integrated simulation
model. This accommodates different case studies that
may require different levels of fidelity in various parts of
a system. Simple ping timings can be modeled to ap-
proximately 100 ns. We present results comparing the
simulated versus actual execution time of a 3D neutron
transport application run on a machine with a Quadrics
network.

INTRODUCTION
The magnitude of the scientific computations targeted

by the US DOE ASCI project requires unprecedented
computational power, and bandwidth to enable remote,
real-time interaction with the compute servers. To fa-
cilitate these computations ASCI plans to deploy mas-
sive computing platforms, possibly consisting of tens
of thousands of processors, capable of achieving 10-100
TeraOPS, with WAN connectivity from these to distant
sites.

The à la carte project seeks to develop a simulation-
based analysis tool for evaluating massively parallel com-
puting platforms including current and future ASCI-scale
systems. This tool will provide a means to analyze and
optimize the current systems and applications as well as
influence the design and development of next-generation
high-performance computers. Hence our general goal is
to design and implement a flexible and modular simula-
tion framework for design and analysis of extreme-scale
parallel and distributed computing systems, and as an
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Figure 1: The architecture of the à la carte simulator.

ongoing part of this process to validate the accuracy of
results produced by any particular model.

Our basic approach relies on an iterative development
process for constructing components of appropriate fi-
delities and integrating them into a portable and efficient
parallel discrete-event simulation that is scalable to thou-
sands of (simulated) computational nodes. Components
may be processors, switches, network interfaces, or ap-
plication workloads, for example. Studies of hardware
architectures are made by running our simulation for a
particular aggregate system composed of these compo-
nents. The output of the simulation captures the be-
havior and performance of the components, and may be
visualized using the à la carte visualizer. (The visualizer
utilizes the Flatland framework created at the University
of New Mexico as part of the Homunculus project [1].)
Figure 1 illustrates the architecture of our simulator.

We chose a portable, conservative synchronization en-
gine, the Dartmouth Scalable Simulation Framework
(DaSSF) [2, 3], Dartmouth College’s implementation of
the Scalable Simulation Framework API [4], for the han-
dling of discrete events. DaSSF manages the synchro-
nization, scheduling, and delivery of events in the simu-
lation; it has a lean C++ API and supports both shared-
memory and distributed-memory parallelism. The SSF



API provides five base classes that applications may sub-
class. The SSF Entity class defines the entities in the
simulation and maintains their state information. The
SSF Process class defines the behaviors that entities pos-
sess. Entities are connected to each other via chan-
nels, an SSF OutChannel in the transmitting entity and an
SSF InChannel in the receiving entity. An SSF Event rep-
resents the information that flows between entities across
the channels. Additionally, DaSSF enhances SSF by pro-
viding classes for semaphores, timers, random number
generation, data collection, and simple statistics. DaSSF
is available for a variety of platforms.

We use the Domain Modeling Language (DML) [2] to
specify the architecture and workload to be simulated.
Properties of model components, the number to be in-
stantiated, and their connectivity are specified in the
model DML file. Another DML file contains runtime
information such as simulation start and end times and
the values of global parameters. DaSSF provides a par-
titioner that constructs the simulation components from
the topology in the model DML file and distributes these
components over the parallel computing platform. The
lower two levels of the architecture in Figure 1 comprise
DML and DaSSF.

The component-based design (represented by the mid-
dle layer in Figure 1) allows for the seamless assembly
of architectures from representations of workloads, pro-
cessors, network interfaces, switches, etc., with disparate
resolutions, into an integrated simulation model. One
can mix and match components of different fidelities to
construct a model with the appropriate level of detail
for a particular study. We are focusing on the devel-
opment of a simulation capability that scales to tens of
thousands of processors and that can execute on a wide
variety of computing platforms which may themselves be
very large.

The current à la carte implementation comprises low-
and medium-fidelity models of a network and low-fidelity
and direct-execution models of workload. The next sec-
tion briefly describes our current workload models. Our
medium-fidelity representation of the Quadrics intercon-
nection network follows. This implementation supports
studies of simulation performance and scaling, and also
the properties of the simulated systems themselves. On-
going work aims to improve the fidelity of the representa-
tions and protocols with validation at each stage. Future
work will further emphasize the representation of I/O
and storage, and wide-area networking.

REPRESENTING APPLICATION
WORKLOADS

In the simplest workload model, the user specifies
exactly what messages will be sent from each SMP node
in the network topology, the time the message is sent,

the destination of the message, the message size in bytes,
and optionally, the data content of the message. This
workload model is useful for testing specific features of
the network models because the content of messages is
precisely controlled. It can also be used in trace-driven
studies of network behavior.

The statistical model for a workload is characterized by
three random variables: an exponentially distributed de-
lay between messages, an exponentially distributed mes-
sage size, and the message destination, where all possible
destinations are equally likely. The average values for
message delay and size are specified in the DML model
input. The destinations to which each source node can
send can be specified individually for each node.

The ping workload model was developed to facilitate
comparison of the simulation with ping tests conducted
on the network hardware. Parameters for this workload
are the exact size of the message, the exact delay between
messages, the number of messages to send, and the mes-
sage destination for each message source.

The direct execution workload component provides a
means to generate network messages according to the de-
mands of an actual running application. In direct execu-
tion simulation the application is executed on the same
machine used to perform the simulation. The applica-
tion is typically modified to call the simulator only for
those operations that differ between the host machine
and the simulated machine. Using the host machine to
directly execute some instructions rather than simulating
all instructions can result in considerably faster execution
with minimal loss of accuracy when the host and target
have similar architectures. The experiments with direct
execution thus far have focused on simulation of com-
munications on the interconnection network and direct
execution of the computational aspects of an application.

QUADRICS INTERCONNECTION
NETWORK MODEL

The primary requirement is the ability to accurately
model the movement of packets in Quadrics networks
consisting of Elan network interface cards [5, 6] con-
nected to Elite crossbar switches [7, 6] in a fat-tree
network at nearly flit (16-bit unit) resolution. Rather
than model the processors and memory hierarchy of an
SMP node in any detail the emphasis is on modeling the
interconnection network and routing protocol. We need
to accurately track the movement of the message across
the PCI bus between main memory and the network
interface card (NIC), account for its packetization, and
clock the transfer of data across the network. Because
contention may exist in the network, different parts of
the packet may move at different speeds through the
switches (i.e., buffering and delays may occur anywhere
in the network).



The model contains three types of DaSSF entities,
representing the SMP node, the NIC, and the network
switch. The SMP node has an outgoing channel for send-
ing messages to its NIC and an incoming channel for
receiving messages from its NIC. The NIC has a corre-
sponding incoming channel for receiving messages from
its SMP node and an outgoing channel for sending mes-
sages to its SMP node. Additionally, the NIC has an
outgoing channel and an incoming channel that connect
it to its network switch. Each network switch has 8 in-
coming channels and 8 outgoing channels. At the level
nearest the NICs, 4 of the channels communicate with 4
NICs and 4 communicate with the next level in the qua-
ternary fat-tree. Higher in the fat-tree, communication
involves only other switches. Figure 2 illustrates the lay-
out of such a network with 64 computational nodes and
three layers of 16 switches each.

DaSSF entities are assigned to timelines in the model
DML file. A DaSSF timeline (another name for a log-
ical process) is a submodel that may run concurrently
with other submodels [3]. Entities on different timelines
communicate exclusively through messages passed over
channels. The assignment of entities to timelines may
have a large effect on simulation performance, especially
when the latencies on the channels differ greatly.

The SMP node has two DaSSF processes, TWorkload-
Sender for sending messages and TWorkloadReceiver for
receiving messages. The route that a message takes
through the network is determined at the source. The
NIC has a routing algorithm which is composed of four
tightly coupled processes: TWorkloadListener receives mes-
sages from the source SMP and buffers them if the NIC
is busy, TBusTransfer models the transfer of data across
the PCI bus which is represented by a DaSSF semaphore,
TNICSender splits the message into packets and sends the
packets to the network switch, and TNICReceiver receives
packets from the switch and sends the completed message
to the destination SMP. The network switch has a flow
control algorithm which has one process, TCrossbarSwitch,
that receives packets on an incoming channel from a NIC
or another switch and forwards them out the appropriate
outgoing channel to the next switch or NIC as specified
by the route that is embedded in the packet. DaSSF
timers are used to control the interleaving of operations
related to the simultaneous passage of multiple packets
through a switch. DaSSF events are defined for messages
and for the packets in a message. The precise behavior
that occurs in the processes depends on the type of event
that arrives.

The design relies on the tracking of the head and tail
of the packet throughout its history, and also of vari-
ous flit-level tokens specified in the Elan protocol. Fig-
ure 3 illustrates the sequence of operations it takes to
move a message from one computational node to another

through this sort of network. The existence of two vir-
tual channels sharing bandwidth at switches (but with-
out age-based priorities, etc.) is accounted for. The Elan
ACKNow request may occur anywhere within the packet
(usually after 64 bytes or at the end of the packet). The
EOP GOOD tokens free the virtual channels used by the
packet. The START/STOP tokens are accounted for by
buffering of packets at the incoming links to switches if
no outgoing virtual channel is available. The PCI bus is
modeled as half-duplex, and accounts for writes to the
NIC’s command port. Finally, wildcards are allowed for
packet routing on upward links. Error conditions or the
hardware support for broadcast communications are not
yet modeled. We have determined that adding further
resolution to this network model may not be cost effective
because of the uncertainties involved in the performance
of the operating system on the node, memory issues, and
PCI bus behavior.

The basic strategy for dealing with packets is as fol-
lows. When the head of the packet reaches an entity like a
NIC, switch, or node, it leaves a reservation at the entity.
The head of the packet is forwarded along the route as
soon as possible—it might be delayed slightly for switch
logic or may be delayed significantly if it is queued for
later transmission. As soon as the head leaves the entity,
the reservation keeps track of how many bytes remain
to be transmitted. The tail of the packet cannot be for-
warded until it has been received from the previous stage
and the number of bytes remaining at the current stage is
zero. The “okay” event proceeds along the reverse path
at full speed, and the “good” event cleans up the reser-
vations. There is some fairly complex timekeeping logic
for multiplexing the transmission of packets in switches
and the receipt of them in NICs.

We track the leading edge (“head”), trailing edge
(“tail”), ACKNow request, PACK OK token, and
EOP GOOD token for packets in the network, which are
implemented as DaSSF events.

Scaling Behavior
In order to understand how our Quadrics network

simulation scales as a function of the size of the ma-
chine on which it is run, we have performed direct ex-
ecution simulations of the ASCI SWEEP3D application,
which solves a “one-group, time-independent, 3D Carte-
sian discrete ordinates neutron transport problem” [8].
Three partitions of a single SWEEP3D problem involv-
ing a 50×50×50 cell computational grid were studied: a 2
× 2 partition of computational nodes (with one node per
CPU), a 3× 4 partition, and a 6× 6 partition. For each
of these we varied the number of computational nodes
(with one node per CPU again) used for the simulator
and measured its performance. All simulations were run
on the wolverine machine (wms.acl.lanl.gov), a 64-node
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Figure 2: Quaternary fat-tree network with 64 computational nodes: the circles represent SMP nodes, the rectangles
represent switches, and the lines represent cables.
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Compaq machine with four ES-40 CPUs per node and a
three-layer Quadrics network (see Fig. 2).

Because there are large time delays between the initia-
tion of a message send on a node and its actual departure
from a NIC, it is most efficient to partition the simula-
tion so that the network and NICs reside on the same
DaSSF timeline (since they have short delays between
each other). The nodes are evenly distributed among
the remaining timelines. For all of the simulation runs
we assign a single timeline to each computational node
(CPU).

Figures 4 through 7 illustrate the scaling behavior of
our simulation of this application. It is clear that the ad-
dition of computational nodes does not reduce the over-
all execution time (Fig. 4) or average CPU time (Fig. 5).
(Note that the jitter in the timing results in Figs. 4 and 5
results from having only single measurements for each
data point—which are susceptible to the competition
for machine resources, operating system behavior, etc.—
rather than an ensemble of measurements whose average
or minimum could be taken.) We expect reductions in
time to be apparent when much larger SWEEP3D prob-
lems are simulated, however. The peak memory usage
(Fig. 6) of the simulation increases as a function of the
number of simulation nodes because event queues tend
to be larger when more timelines are present. Similarly,
more kernel communication is necessary (Fig. 7) when
more timelines are present. The fact that we can sim-
ulate a 36-process run of SWEEP3D on two processors
in a reasonable amount of clock time (left side of Fig. 4)
and that the simulation performance does not degrade
when it is distributed (right side of Fig. 4) indicates that
we will be able to simulate SWEEP3D problems that are
at least an order of magnitude larger than the ones pre-
sented here.

Network Calibration
Before attempting to validate the Quadrics simulation

against a real application we need to determine the var-
ious parameters used by the simulation. Many of these
can be set to values given in the network design specifica-
tions, but some must be found empirically. To do this we
consider the case of “pinging” one node with a message
from another node. We examine three types of pings: (i)
sending a message from the onboard memory of an Elan
network interface card to another; (ii) sending a message
from the main memory of a node to another; and, (iii)
sending a message using the MPI protocol, which may
use additional buffers in main memory. For each of these
cases we performed a large set of pings using different
message sizes and passing through different portions of
the interconnection network.

Table 1 shows the parameters that must be set in any
simulation: the ones shown in boldface type were set by
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Figure 4: Execution time of the simulator (not the sim-
ulated application) as a function of the number of nodes
(CPUs) on which it was run for three different partition-
ings of a SWEEP3D problem: 2 × 2 (squares), 3 × 4
(diamonds), and 6× 6 (triangles).
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Figure 5: Average CPU time (i.e., total CPU time di-
vided by the number of CPUs) used by the simulator (not
the simulated application) as a function of the number
of nodes (CPUs) on which it was run for three different
partitionings of a SWEEP3D problem: 2 × 2 (squares),
3× 4 (diamonds), and 6× 6 (triangles).



location parameter Elan-Elan Main-Main MPI
NIC message delay 3.000 µs 3.750 µs 11.000 µs
NIC packet delay 120 ns
NIC packet size 320 b
NIC acknowledgement bytes at end
NIC bus bandwidth ∞ 800 MB/s 950 MB/s
NIC, Switch network bandwidth 400 MB/s
Switch packet delay 36 ns
Node to NIC channel delay (bus bandwidth)−1

NIC to Level 1 Switch channel delay 3 ns
Level 1 Switch to Level 2 Switch channel delay 1 ns
Level 2 Switch to Level 3 Switch channel delay 10 ns

Table 1: Parameters used in ping simulations: the parameters in boldface type were set from measurements, rather
than from design specifications.
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Figure 6: Peak memory usage on any CPU for the simu-
lator (not the simulated application) as a function of the
number of nodes (CPUs) on which it was run for three
different partitionings of a SWEEP3D problem: 2 × 2
(squares), 3× 4 (diamonds), and 6× 6 (triangles).
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Figure 7: Number of simulation kernel events in the sim-
ulator (not the simulated application) as a function of the
number of nodes (CPUs) on which it was run for three
different partitionings of a SWEEP3D problem: 2 × 2
(squares), 3× 4 (diamonds), and 6× 6 (triangles).



studying the results of regression analysis of ping mea-
surements; the other parameters were determined from
design documentation describing the Elan/Elite hard-
ware. Figure 8 shows the raw data. We encountered
several significant difficulties in determining these pa-
rameters, most of these related to issues on which the
Elan/Elite documentation [5, 7] provided little guidance
as to the detailed behavior of the hardware. There was,
for instance, an anomalous discontinuity in measured la-
tencies for messages involving one versus two packets if
the packets have to pass above the first switch layer in
the network. The slopes of all three series of data (Fig. 8)
seem inconsistent with the implication in the Elan/Elite
documentation that subsequent packets in a message in-
cur the same switch delay as the first packet. Also, the
fact that the triangles in Fig. 8 form series with two differ-
ent slopes suggests that there may be a hardware problem
on this particular machine introducing additional latency
in part of the third level of switches. It also appears
that packets are delayed much more between switch lay-
ers 2 and 3 than between 1 and 2, even though a short
wire connects adjacent layers—they all reside in the same
chassis.

Figures 9–11 show the quality of agreement of our
ping simulations with measured data. For Elan-memory
pings, we achieve about 100 ns accuracy; for main-
memory and MPI pings, we achieve about 750 ns ac-
curacy. The main-memory and MPI ping accuracy can
probably only be improved by incorporating higher res-
olution memory and bus models into our simulation.

ASCI SWEEP3D VALIDATION
In order to validate our Quadrics simulation, we have

compared the actual running time of the SWEEP3D
application with our simulation of it using the direct-
execution workload. We consider the same three
SWEEP3D partitions discussed in the section on scaling
behavior. SWEEP3D and all of the simulations were run
on wolverine; some of the simulations were run when this
machine was loaded with other applications, so our mea-
surements contain noise and systematic errors. A kernel
patch supporting high-resolution timers was unavailable
at the time so the standard Linux timing functions, which
have a resolution of 1 ms, were used. (Times measured
as zero were rounded up to 50 µs, based on an analysis of
execution traces of SWEEP3D.) These experiments will
be rerun when a high-resolution timer is available and
when the machine is unloaded.

Figure 12 shows that our simulated execution time gen-
erally agrees with the actual execution time to within
10%. The couple of points with larger errors may have
resulted from interference with other jobs running on the
machine during the simulation. Note that no parameters
in our network model were adjusted for this validation—

all of the parameters were determined purely from the
MPI ping analysis above. The simulated program pro-
duces numerical results for the neutron transport calcu-
lation that are identical with those obtained by running
the program itself.

CONCLUSION
We have outlined the design and implementation of

our Quadrics network model and our workload represen-
tations along with the simulation technology that sup-
ports them. Our component-based development process
enables seamless composition of hardware, protocols, and
workloads of varying fidelities into a single simulation.
These models have been calibrated to the behavior of
an existing cluster computer of 64 nodes with 256 Al-
pha/Linux processors connected by an ELAN3 Quadrics
network. The calibrated simulation accurately represents
real MPI-based pings on the network to within about 750
ns; lower-level pings are modeled accurately to about 100
ns. The network and workload modules have been vali-
dated against the real behavior of a representative ASCI
application, SWEEP3D: we can predict the execution
time of this application to within about 10%, even us-
ing the relatively coarse application timers available for
our experiments. Our study of the scaling properties of
our simulation indicates that it can handle much larger
application instances than SWEEP3D.
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